Vol.10.Issue.4.2022 (Oct-Dec) OKY PUBLICATIONS

http://www.bomsr.com
Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

SUM OF TWO SIXTH POWERS EQUAL TO DIFFERENCE OF TWO FOURTH POWERS

Abstract

Oliver Couto ${ }^{1}$, Jaros-law Wr' oblewski ${ }^{2}$ ${ }^{1}$ matt345@celebrating-mathematics.com ${ }^{2}$ Mathematical Institute, Wroc-law University, pl. Grunwaldzki 2, 50-384 Wroc-law, POLAND. Email:jwr@math.uni.wroc.pl DOI:10.33329/bomsr.10.4.42

ABSTRACT In this paper we examine the diophantine equation $a^{6}+b^{6}=c^{4}-d^{4}$. We arrive at a parametric solution by algebraic means and also obtain a solution by elliptic curve method. We also provide solutions for the equation $\boldsymbol{a}^{\mathrm{n}}+\boldsymbol{b}^{\boldsymbol{n}}=\boldsymbol{c}^{4}-\boldsymbol{d}^{4}$, where \boldsymbol{n} is positive integer non-divisible by 4 . Note that Izadi [1] has given solutions to a similar diophantine equation, where difference of two sixth powers equals to difference of two cubes, obtained by elliptic curve method.

1. Parametric solution to $a^{6}+b^{6}=c^{4}-d^{4}$

Assuming in the equation

$$
\begin{equation*}
a^{6}+b^{6}=c^{4}-d^{4} \tag{1}
\end{equation*}
$$

$c=x+y$ and $d=x-y$ we get

$$
\begin{equation*}
c^{4}-d^{4}=8 x^{3} y+8 x y^{3} \tag{2}
\end{equation*}
$$

Attempting to match right hand side summands of the equation (2) to a^{6} and b^{6} respectively, we arrive at

$$
\begin{equation*}
a^{6}=8 x^{3} y \quad \text { and } \quad b^{6}=8 x y^{3}, \tag{3}
\end{equation*}
$$

which is satisfied e.g. by

$$
\begin{equation*}
x=8 p^{6} \quad \text { and } \quad y=q^{6} . \tag{4}
\end{equation*}
$$

This produces the following parametric solution of the equation (1):

$$
\begin{equation*}
a=4 p 3 q, \quad b=2 p q 3, \quad c=8 p 6+q 6 \quad \text { and } \quad d=8 p 6-q 6 . \tag{5}
\end{equation*}
$$

Note that the solution (5) satisfies additional condition $\operatorname{GCD}(a, b, c, d)=1$ whenever q is odd and p, q are relatively prime.

To obtain a numerical example we take $p=2$ and $q=1$, which produces (6)

$$
\begin{equation*}
a=32, b=4, \quad c=513 \text { and } \quad \mathrm{d}=511 \tag{6}
\end{equation*}
$$

2. Parametric solution to $\boldsymbol{a}^{\mathrm{n}}+\boldsymbol{b}^{\boldsymbol{n}}=\boldsymbol{c}^{4}-\boldsymbol{d}^{4}$

Let n be positive integer non-divisible by 4 . By modifying the equations (3) we get

$$
\begin{equation*}
a^{\mathrm{n}}=8 x^{3} y \quad \text { and } \quad \mathrm{b}^{\mathrm{n}}=8 x y^{3} \tag{7}
\end{equation*}
$$

This will be satisfied by

$$
\begin{equation*}
x=2 w^{\mathrm{p}} n \text { and } y=2 v^{\mathrm{q}} n \tag{8}
\end{equation*}
$$

provided $3+3 w+v$ and $3+w+3 v$ are both divisible by n. Assuming more general case $n=$ $2 k$ with odd k we find a solution

$$
\begin{array}{llll}
w=\frac{7 k-3}{4} & \text { and } & v=\frac{3 k-3}{4} & \text { case } k \equiv 1(\bmod 4) \\
w=\frac{5 k-3}{4} & \text { and } & v=\frac{k-3}{4} & \text { case } k \equiv 3(\bmod 4) \tag{10}
\end{array}
$$

In case $n=10$ we have $k=5$ and $w=8, v=3$, which leads to

$$
\begin{equation*}
x=256 p^{10} \quad \text { and } \quad y=8 q^{10} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
a=8 p^{3} q, \quad b=4 p q^{3}, \quad c=256 p^{10}+8 q^{10} \quad \text { and } \quad d=256 p^{10}-8 q^{10} \tag{12}
\end{equation*}
$$

In case $\mathrm{n}=14$ we have $\mathrm{k}=7$ and $\mathrm{w}=8, \mathrm{v}=1$, which leads to

$$
\begin{equation*}
x=256 p^{14} \quad \text { and } \quad y=2 q^{14} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
a=4 p^{3} q, \quad b=2 p q^{3}, \quad c=256 p^{14}+2 q^{14} \text { and } d=256 p^{14}-2 q^{14} \tag{14}
\end{equation*}
$$

In case $n=2022$ we have $k=1011$ and $w=1263, v=252$, which leads to

$$
\begin{equation*}
x=2^{1263} p^{2022} \quad \text { and } \quad y=2^{252} q^{2022} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
a=4 p^{3} q, \quad b=2 p q^{3}, \quad c=2^{1263} p^{2022}+2^{252} q^{2022}, \quad d=2^{1263} p^{2022}-2^{252} q^{2022} \tag{16}
\end{equation*}
$$

3. Solution to $\mathrm{a}^{6}+\mathrm{b}^{6}=\mathrm{c}^{4}-\mathrm{d}^{4}$ with $\boldsymbol{a}=\mathbf{2 b}$

While examining numerical solutions to the equation (1) we have noticed quite a few solutions satisfying additional equation

$$
\begin{equation*}
a=2 b \tag{17}
\end{equation*}
$$

We have also observed that those numerical solutions satisfied condition $\operatorname{GCD}(a, b, c, d)=b$. Therefore we assumed

$$
\begin{equation*}
a=2 x, b=x, \quad c=s x \quad \text { and } \quad d=t x \tag{18}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
(2 x)^{6}+x^{6}=(s x)^{4}-(t x)^{4} \tag{19}
\end{equation*}
$$

which simplifies to the form

$$
\begin{equation*}
s^{4}-t^{4}=65 x^{2} \tag{20}
\end{equation*}
$$

Taking $t=2$ we get

$$
\begin{equation*}
s^{4}-65 x^{2}=16 \tag{21}
\end{equation*}
$$

Equation (21) can be reduced to the quartic curve

$$
\begin{equation*}
v^{4}=65 w^{4}-1040, \tag{22}
\end{equation*}
$$

which is bi-rationally equivalent to the elliptic curve

$$
\begin{equation*}
y^{2}=x^{3}+16900 x \tag{23}
\end{equation*}
$$

Elliptic curve (23) has infinitely many rational points (s, x), e.g. (274/7, 9312/(7)2)
$\left(59 / 29,111 /(29)^{2}\right)$
$\left(13794 / 3761,22533056 /(3761)^{2}\right)$
$\left(5839979 / 232571,4230163499697 /(232571)^{2}\right)$
For $(s, x)=\left(274 / 7,9312 / 7^{2}\right)$ we get new numerical solution:
$(a, b, c, d)=(2 x, x, s x, t x)$
$(a, b, c, d)=(18624,9312,2551488,130368)$.
And for $(s, x)=\left(13794 / 3761,22533056 / 3761^{2}\right)$
we get new numerical solution:
$(a, b, c, d)=(45066112,22533056,310820974464,169493647232)$.

Acknowledgement

The authors appreciate the help mathematician Seiji Tomita has given and are thankfull to him.

References

[1]. Izadi \& Baghalaghdam , On the Diophantine equation, Arxiv-1701.02604v1 dated 06 Jan 2017.
[2]. J. Wroblewski \& A. Choudhry, A quintic equation concerning fifth pow- ers. Rocky mountain journal, vol 43, number 6, 2013.
[3]. O. Couto \& A. Choudhry, A new diophantine equation involving fifth powers Journal , Acta Arithmatica, DOI: 10.4064/aa210419-4-7 [1], 15 June 2021
[4]. O. Couto \& Seiji Tomita, Parametric solutions to (six) n-th pow- ers equal to another (six) n-th powers for degree ' n ' = 2,3,4, 5,6,7,8 \& 9 , Universal Journal of Applied Mathematics 4(3), 5565,DO1:10.13189/UJAM.2016.040303.
[5]. Web site: J. Wr'oblewski, http://www.math.uni.wroc.pl
[6]. Web site: Oliver Couto, www.celebrating-mathematics.com

